Full and faithful functors

In category theory, a faithful functor (resp. a full functor) is a functor which is injective (resp. surjective) when restricted to each set of morphisms that have a given source and target.

Explicitly, let C and D be (locally small) categories and let F : CD be a functor from C to D. The functor F induces a function

F_{X,Y}\colon\mathrm{Hom}_{\mathcal C}(X,Y)\rightarrow\mathrm{Hom}_{\mathcal D}(F(X),F(Y))

for every pair of objects X and Y in C. The functor F is said to be

for each X and Y in C.

A faithful functor need not be injective on objects or morphisms. That is, two objects X and X′ may map to the same object in D (which is why the range of a full and faithful functor is not necessarily isomorphic to C), and two morphisms f : XY and f′ : X′ → Y′ (with different domains/codomains) may map to the same morphism in D. Likewise, a full functor need not be surjective on objects or morphisms. There may be objects in D not of the form FX for some X in C. Morphisms between such objects clearly cannot come from morphisms in C.

Examples

See also

References